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ABSTRACT _ i

The calorimetrically measured heat-flow curves of- physxml, chemxml or
biological processes are recorded with an intrinsic error, due to the slow heat conduc-
tion phenomenon. Mathematical calculations have shown that the size and type of
“‘smearing” is a function of the size, ‘geometry-and heat the conductivity. of the
_sample. Under certain conditions, it is possible to mathematically eliminate the
“smearing” by employing the Convolution-Integral equation. It is necessary, that one
is familiar with the apparatus function. It is demonstrated how one can obta.m the
apparatus function and steps reqmred for the mlculauon of “de-smearmg”

INTRODUCTION .
One of the most significant purposes of calorimetry is the study of the measure-
ment of heat evolved or absorbed in physical, biological and chemical reactions. The
-. flow of heat or other analogous quantitics are usually graphically shown against time
or temperature. An example s illustrated in Fig. 1 of a first-order phase transition
(c.g., melting of a substance), which could also be substituted by a ‘sudden chemical
(c.g-, an explosion) or biological (e.g., musdc ‘contraction of . a test animal) event.
Ideally, the corresponding heat flow at the moment of the reaction should be infinitely
large or constant (Dirac-function). However, the calorimeter suppliesa finite “smeared”
heat-flow peak, whose size and form:are dependent upon the calorimeter, time and
 many others factors. The measured peak does not coincide with the true cvent,
- becanse the calorimeter falsifies the physu:al reactions. Even. the pioneers of mlon—
" metry have been occupied with the search for a2 method to correct this intrinsic error.
-1 do not wish to dwell npontbchtcmzyaspwfs butratbertosupply the practical man
-w:thasumma:ytoaxdhnmmevaluaungthesxgmﬁmnoe,needandposs.’bihtyof
- obtainingacomecuon. ‘Also to make him aware to procure the apparamsfunctlon
d, wnh the help ot‘ tlus dmmmr” the mmsnmd hmt-ﬂow-curvc ina computer
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Fig. 1. Connection between a2 thermodynamical step-function and culodmetcr-moording_
ORIGINS OF SMEARING

Firstofall,ltxsnec&arytodanfytheongmsof‘sm&nn ’ofthclda.lhmt
flow due to the apparatus. The transportation of heat by molecular oompenmt:on :
effects requires much more time than needed in other balance proc&:s Thc h&t
conduction equation describes the relation: :

p-¢c, oT "
dxvgradT— " » | | | .(A)
One dimensionally simplified: : T ) -
a2 ] : . o
ST p-c T (Ai)

ax* ¥ Gt

T(x,0) is the temperature at time ¢ and place x, p the dcns:ty, c, the specxﬁc hmt
capacity, 4 the heat conduction coefficient. . SR
The flow of heat per unit in isotropic media is: -

'Onedxmensxonallysunphﬁed ) :

For media whxch are not 1sotrop1c (iec., crystals) 2is not a number bnt a tensor.‘.
-~ . Thecorrect solution of thc heat conduction equation is appb@blc only ina fcw
special cases, since every solution is. subject to initial and bonndary condltlons. In‘
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»othcr words, the tempetaml'e field and the gcometry atthe begmmng of the balancc -
prowssmustbetakenmtoaccount. ] N e

SOLUTION OF THE HEAT-CO‘!DUCHON PROBLB(

Figure 2 illustrates the solution for a smnle problcm. A rod vmh tcmpcraturc,

T.is brought into contact with a block with temperature 7, at time 7,, heat flows into
the rod at a distinct rate until it has reached the temperature of the block. Figure 3

shows the time-dependent flow of heat through two cross-sections of a rod..This

example gives an explanation for the “smeared” heat flow curves obtained fora qmck

event (heat contact). In order to obtain a more prease statement of the mlonmetnc

processes, onc must first solve the heat conduction equation for the initial and bound-

: ary conditions. There are many different methods that can be employed, for example
to calculate the heat flow phenomena in reactor technology?~%. The followmg is an

approximation developed at the atomic research center in Karlsruhe®. Any given body

compowd of various snbstanws can be redumd into its sub-partmls (e.g., cub&s) A

o -G_eor)netriccl

- Arrangement =
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cube is then substituted by a massless, ideal conductive rod to the next neighboring
site. The thermal conductivity coefficient of the rod can be calculated from the
contact point, the distance between the cubes and the thermal conductivity coefficient
of the corresponding substances (Fig. 4). One then obtains a network ‘of ‘thermal
conductivity, whereby an energy-balance at each distinct point can be calculated as
follows: :

ZQ-At=c,-p-V-(T— )+ Qu-p-V

0 is the heat flow, c, the specific heat capacity, V¥ the volume, p the density, T* the
final temperature, T the initial temperature, Q., the specific heat of transformation
of the distinct point and Af the change in time. The followmg equatlon system is
for an entire network of points: - -~

ZL.-g TG -T)-dt=cua-pa VATi —T) + Quz (z--l 2,3,..-n)

k=1

T; is the initial temperature field, 7] the final temperature field. The change n tlme
At must be lower than a critical coctﬁaent to avoid fluctuations.

4t < Minﬁ’_“_,pLV‘

2 30

When the subdwlsxon of the body is suﬂicxently ﬁne, one can get a soluhon of the
heat-conduction problem to a very good approximation. A computer reqmrs almost
onc hour to calculate a steady-state temperature field. We . havc mlculated the .
theoretical heat-flow curves, by employing’ the equatxon stated above. F‘gm'e 5

illustrates the results of a phase transformation of a 1 mm thick samplc of indium -
(in) and polyethylene. (PE), which were. heated at one_ side at 1. K'min_ *,/The heat.

flow paaksare notall similar, whjchlsdueto thc 100t1megrwter gﬂb}e{a’m:edlkﬁf-
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Fig. 6. Compmdhat-ﬁowmimoconstammxedphmofdﬂamtmickm

bution inside the PE- and In~samples as weli as in thc smdy-statc and dunng thc
melhng stages. Figure 6 shows: that the thlckn& of tbc samplc is-a very mportant
factor for the resulting melting curve. .. . ..
='The meltmgpmk can be drastically chan@d by placmgathmshect of alnmmnm -

: ’between the In-sampl=:and the hmtmgelement, whercbythc aluminum is arwstor
. totbch&tﬂow (Fxg,'l) P Sxmise

;jii’ The. geometry ofachsample is aJso raponsxble for any changm in the h&t .

ﬂow profiles oﬁthc ‘meltingpoint. -This’is illustrated in-Fig. 8 by-two.samples of a
, pooﬂy oondncuve material;’one ﬂat and. the othcra symmetrical cylinder: The form
- and—sizé of the “smmtmg’ of the h&t—ﬂow curve-is: dependent ‘upon-many" factors;
. the pathway of heat oonducuon, the geometryand size® of thc mmple, the conduannty
- “and.the specific héat. #1500 S e L i B

% '315“'»3: e
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CONSTRUCTION OF CALORIMETERS
Fignre 9 shows the principal construction of calorimeters, which record
temperature-dependent heat flow curves (DTA :or DSC principle). This type of
calorimeter records a specific curve (see Fig. 10), when an endothermic orexothenmc
r&cuonocansmthesampleatatempcmmrcn.Thctcmperamrcofthcsamplc'
increases very quickly in an exothermic reaction, whereas durmg an’ endoth:rmlc,
reaction it-remains constant until the required heat for a- transtxonzsgamed.'lhcxcf
fore, it can be stated that the size of the distortion (see segments 2 and b in. Fg.JO)A-_
is dependent upon the size and efficiency . of : the heat-conduction: thhm thc ;given -
path (2 in'Fig. 9). The transition of heat from sacuon?.totheoontamerand fromthc-_
contamcrtothcsamplcarcalsodeterminingfactors. . e ;
The size of the distortion accordmg to the DSC-pnnc:ple @nzbe red
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Fig 10. Time-dcpendent tempesature (or differcnce-temperature) curves ofsmplﬁ undaaomg a
phase-transition in calorimeters. -

without changing tke distance of the heat conduction pathway. This is made poss‘blcr

bwause the heater counteracts the tendency towards temperature vananog mthmj'

the samplc and “therefore. creates a more rapid heat balance. -~ ‘
Aﬁ 1sopcnbolc mlo'uneter whxch follows the Calvct-pnnc:ple 1s usually

eadt

by thermoelemenfs, wlnch are tbermally eondut;hve. The hwt ﬂow througl the'
- thcrmoclcmcnts thetcfonf: pmportxonal to thc rwordcd tcmpera.mrc dzﬁ‘crencef

(s;egnj‘i;; oo
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The heat flow also creates a temperature balance between the isothermic block and the
container, because the conducted heat is related to the temperature of the container
via its Leat capacity C.

do a7,
< =% a
Sipce T, is constant:

dT,

~ Tp

with T = Tz — T, it follows.

aT
&~ T
integrated:
T~e™ -

When the calorimetric conmner undcrgos a suddcn change in tcmperature a curvc is
obtained as illustrated in Fig. 12. The recorded curve in F’g. 13is the sum ‘of two
exponential functions with dxﬁ'ercnt time constants. Bemusc th. -ngth of the heat
conductxvc pathway from the samplc to jacket B must be takcn into consxdcratlon, thc
nm‘constants ofthcexponcnnal curves axeusuallyvcry dnﬂ‘ercnt.'l'heﬁ:stoonstant
is nsua!ly ‘much smaller and thercfore an’ ‘important factor for the ““de-Smearing”,
which is to be described later. Buttbxsconstantlsdcpendcntupon thcsm:a.ndloamon
of the sample.

In all instruments available for czlonmetnc m&surcmcnt, the bxologun!,

physuzl orchemml cvcntsget smcmred"-'ecordmgsmt:ma:dm.en:txoiz:\ir]m:h‘w
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caused by the hmt conducuon phenomcna. Thc degree of “smnng" varies and
therefore also the falsification of the results. This will be dxscused below. - ;

Let us suppose a ﬂy is placed in the calorimeter container. Can wé measure the
heat produwd by the action of the fly’s wing musclesata specnﬁc moment? This is not
possib!e, since the time constant of a few milhseconds ‘wonld reqmrc an xmmensely
small heat-conductive pathway between the heat source and the - ‘méasuring “probe.
Przncxpall the hmt conduction cquation (A) caii be solved for negative time, with the
~ aid of known bonndaryandnmnalvalus Itxspossiblctom&asurcthevalusatthc
—end, of the heat-conductive pathway and to employ them to reconstruct t.bc mitia.l
~cond1t|ons. But thxs cannot be done without rmtnctldn, smce the transmission of heat . -
'xsastausmal procus. thnthcs:gnal bccomssma]lcrthanthesmhshalnmse/
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(i.c., Brownian motion of air molecules) or the measurement error, then it is no
longer distinct enough to be recorded and it is also mathematically impossible to retrace
it to its origin. The flapping of the ﬂy’a wings produces heat, which comes into contact
with moving air molecules. This oscillating heat flow from the fly can no longer be
distinguished, since it has been transformed into a balanced heat flow due to the
presence of the motion of the air molecules. Therefore, the entire information of
reaction is lost and there are no possible means to obtain it. The statistical fluctuations
of the measured values should be included in the heat conduction equation, they cause
flucmations at the point of measurement for negative times much greatcr than the
measured event.

Also signals obtained at the measuring probe that have a greater value than the
statistical error can hardly be retraced back to their origin, with the-aid- of the heat
conduction equation. A simplified mathematical method has been adopted in other
fields of physics (i.e., optics). This method utilizes the entire knowledge of the appara
tus in order to calculate unknown complex processes from measured curves. -

The following gives a summary of the conditions under which this “de-smearing”™
method can be employed. Let us assume that at x, a rapid reactions g(x) takes piace,
which can be described with the aid of the Dirac function &(x):

oforx=0

ox) = andf&(x)dx:l
Oelse

£0) = 0, - 5(x — x,)andfg(x)dx —o,

Q, is total heat of the reaction. ,
The instrument gives the function h(x) where:

[ bexax =0,

From h(x) one obtaxns the “apparatus functxo f(ﬁ:) also knowh as “slit-function”
n opucs, by normalizing the imitial values and the area:

foy - M= e dff(x')dx'-l
Tlns com:lanon lS shown graphlca.lly in F‘g. 14. thn one is d&lmg w:th two;
mdependent sudden mctxons, then h(x) is equal tothcsum of them&sured cnrv&s of
~ each mchon, when ‘the pnncxple of superposxtlon apphs to the physxwl cxrcum- 4
stana:s(F’g, 15). : . 3 U -
T V,Tl?cﬁln,@‘?l_lofn sudden reactions: ' ool ‘
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One can approximate a continuous function g(x) with 'the aid of a multitude of rapid
reactions, in which the function is composed of ‘many ‘strips with a w:dth A4x; and
—helght g(x;) (Fig. 16).

Thenthcamofoncstnpst, = A4Ax; - g(x,)..Andwgmnwntc: 7

dx.-oo i=1 R VU

- The Muc recordcdbvthe appamms | N
EIE NSRRI SR R

T Axp~0 I=1 . . Lot
S e A . - L T
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Fig. 16. Answer of the apparatus to a time-dependent event.

this is the definition of the following integrat:

@

b = [ g0+ ~ ¥)ax ®)
This is the so-called Cenvolution Theorem which can alse be stated in a familiar

abbreviated form:
——

h(x) = g(x) f(x)
This integral equation reveals the mathematical relationship between the measured
function h(x), the true result g(x) and the apparatus functlon f(x), under the followmg
assumptions:

(1) The apparative result of a sudden event must be reproducible and normal- -
izible relative to all other experimental factors {i.e., initial valve and area). ,

(2) The apparatus must be capable to superposc the mults of many rapnd
rmnom (linear behavior).

FOURIER TRANSFORM AND RECURSION METHOD

If the apparatus function is known, then it can be substxtuted in the mtegral
equation above. It is then possible with the function of the measurement h(x) to
obtain the unknown truec result g(x). Both the Founer—tmnsformatxon and the
recursion method require the mathematical calculation of a computer. The ‘Fourier-
transformation is an mtegra.[ operation:

nf(«x» =V(‘2“IE) f ) - €*7 dy ; o K | e )
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'applxedtotheconvolutxon theorem o . E T : e s
FEE) = FE) FE) SR R
The convolution product- transforms mto a SImple product and it becomes possible )
‘to. solve the reqmred functlon in. Founer spaee SR )
@) e
‘g( » F@ e
The reqmred funetxon is produoed in the Founer—retmnsformanon. S

X -1 F (h(x))
g(x) f f (g(x)) =F CF (ﬁx))
Tlns method is a.lways applunble, since Fourier transformauon has become common-
place in ail computers. The main drawback is the lengthy calculations and the general
unclearness because of computation in Fourier space. Those who have no experience
with Fourier-transformation should be aware of the “breaking-off-effect” and the
“sampling theorem™, which tend to register periodicity and fluctuations that do not
exist. More extensive information can be found in the literature®- 8. :

. The followmg shows the Recursion method employed to solve the Convolution
Theorem: - . ]

8 (x) = h(x) _ 7
500 = £y () + B() — g S ®
The difference between the “refolded™ approximation g,_,(x):

B, = )10

and the measured function h(x) are simply added to correct the approximation. The -
Recursion formula does not converge in the case of angular functions of an event
(In—Out-Effect). Angles or unsteady functions create oscillations of the approximation
function, which quickly diverge. The smooth curves obtained in calorimetry converge
quickly and easily. Usually after 20 steps, the square-sum of the error between the
- measured and fabricated function: (4h(x))? is less than 5 percent. It is very easy to
program the- Recursion formula, since it contains only the Convolution product -
. which is a simple integration-procedure. In order to “desmear” the measured curves, .
the -assumptions stated above must-be checked and the apparatus-function procured.
As was shown in the. deduction of the formulas, it is newssary to employ rapid -
. mcuons. One can make use oi the following effects: - '
A , DTA and DSC appararus (4T orQasa funcuon ofthe tempera.mre)
e Exothetmxc processes: mlm-explosxons (rapxd dxsmtegrauon) Joules hmt ~
(cun-ent impulses acoordmg to resistance).
B Endothetmxc proeesses ﬁrst-order phase tra.nsmon of pure substanm

oo ..1;-,



Isoperibol apparatus: : : - T e sk

Exothermic processes: Jouies heat (current 1mpnlscs acoordmg to rwstancc or
electrolyies).

Endothermic processes: Peltier cﬂ'ect in thermoelements.  — . ' -

One varies the size of the heat impulses but maintains the condmons xdcumzl
to the measurements to be desmeared. This is a very crucial factor because, as we have
seen, the measured curve is dependent upon the size and geometry of the sample as
well as the heat-conduction coefficients. The measured curves obtained are normalized
with respect to the area and initial position. If there is a fairly good correlation, then
it can be employed as the apparatus function. If the fluctuations are not systematical
orofalargesize,thcnthcm&mcurvcmnbecmployedwith caution to try “de-
smearing™. It is also advisable to compare the measured curves of two or more rzpid
reaciions with the calculated curve, in order to check the superposition. If the apparatus
works iz linear behavior and is reproducible, then the convolution integral givas a
precise method to “ ear” heat-flow curves and an astonishing high resolution.
This is shown in Fig. 17 for the melting-curve of octadecane. A normalized mcltmg
curve of the same amount of benzoic acid was employed to give the apparatus
function. Indium, a common standard substance was not used in this case, because
it has an entirely different heat-conduction coefficient than the organic substance. The
extent of the “de-smearing™ efficiency is shown by the relationship between the

(a) cpeeretus function
Yoot £}

enfolded g, (i}

mecswed hiT)

3 L3 ¥ T

" ] [}
297 288 259 3060 20t 302 i ) )
Figz. 17. Original and “desmeared”™ DSC-melting-curve of octadecane.

. measwed h{I) -
refolded hy(T}

288 300 302 . 302 K

octadecane. - - ’ _ - Sttt T e T D LT
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refoided fnnétion b (x} and the measured function. -This is illustrated . in Fi g. 18 for
octadcmnc.thnthechangeofthcmmsumd heat flow:as a function of time is
comparable in size to the resolution of the apparatus, characterized:as the halfwidth .
of the apparatus-function, then desmearing is advisable. When. the changes of the

measured heat flow occur at a very slow.rate, thea it i1s not necessary to “de-smmr”
since the m&sumd funcnon isa good appronmatmn of the truth. -

ERRORS-

‘In conclusion, I would like to discuss errors. The preciseness of- the results is
dependent upon the preciseness of the measured function h(x) and the apparatus
function f(x). Here, this relationship cannot be derived exactly but only hinted?.

According to all rules, the preciseness in the x-dlrectxon (temperatu:e or tune
scale) is much greater and we can write: = -

«x)nmxd = f(X)gue = 4f

h(x)neasnrcd = h(x)lnle + 4h

B(X)aatcutated = B(XDirwe = 48

with fluctuations mdcpendcnt of x and approxlmated by the mean value, which is
assumed to be constant.

Substitution in equation (D) gives an apprommatxon of the error:

l4g] < |4h]l + Q- jdfland Q = fg(x)dx

This formula only holds, if we can solve the integral equation for the convolution
exactly. By employing an approximation such as the Recursion formula, the resulting
errors must be taken into account separately:

|48z ()l = [h(x) — h(x)i + Q- 14f]
As shown in Fig. 18, |h(x) — h(x)] is a function of the abscissa and the error also.

£{x}

' Fig 19. Appamnsfum&onwiihﬂuddaﬁonandhewefonowﬁlg_ﬁdﬂx-ﬂmﬁm ’



362

Auny flectoations of the “de-smeared” measured curve which are smaller than JAg] +
|Ag,..| are merely statistical and not -important.- ‘Fluctuations of the- apparatns
function Af cause fluctuations of the half-width value 4b (see Fi. ig. 19). One can show
that the half-width value of the steep flank of the apparatus function iS a measure of
the resolution of the apparatus in the abscissa direction. Thctcfore, its fluctnation is.a
measure of the resolution of the “de-smeared” measured curve in the- absassa
direction. The improvement of the resolution is contiguous to the ‘difference between -
the half-width value and its fluctuation. As a rule of thumb, one can say that for
apparatus functions similar to the one shown in Fig. 13, the resolution in the abscissa
dircction aﬁcr“dc-sm&rmg’ is bcttcrthan half of the steep flank width b1 (F'g, 19) .

- m

REFERENCES

1 E.Calvet,RtathrogrmmM:aom!ormmry mH.A.Shnna'(Ed.),EwmmuaIlemzo-
chemistry, Vol. 11, p. 388.
YmA.thuda(Ed.LIkMamCarbMPwPr&,Oxfmﬂ,l% - ’
G. M. Dusinberre, Numerical Analysis of Heat Flow, Mchw-H.ill,NewYork,Toronto,Inndon,
1949,

D. Kisch, Kernforschungszentrurn Karlsruhe, Germany, KFK 1554, 1972, .

S. Malang and K. Rust, Kernforschungszentrum Karlsruhe, Germany, KFK 1053, 1965.

R_ Bracewell, The Fourier Transform and its Application, Mchn%HiIl, New York, Toronto
London, 1965. . o

H_ Wolter, Arch. Elektr. Ubenr@wen. A.E.U i3 (1959) 101

A. Spitarv, 7TReorie der Informationsitbertragung, Vieweg, Braunschweig, 1973.

W b WN



