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ABsTRA& .- ~_. -. 

The calorimetrically rueful& &eat-flow- c&es of- physical, chcu&l or 
bioIogical processes a& recorded with an intrinsic error, due 6 the &w heat conduc- 
tion phenomenon. Ma&xnaticai calculations haye showxi that the-& and type of 
%n&.ug? is a function of .the size, ~geomctry~and heat t.Jie~.cxmdnctivity- of .the 
sample, Under certain conditious, it is possiii~e‘ to mathematically elimiuak the 
“smearing= by employing the Convolution-mtcgral cqnation- It is neaxcaq, that one 
is fAmii with the apparatus Won- It is demoustra&d hoti one can ol&n the 
apparatus function and steps required for. the calculation of “de-smcqring?‘. _ ; 
. . -. : _. _- =- _ -. __ __ - -. _-_: . . I. 
1 . . . . : .; _ -. .- ‘_ - 1 : 

PSLRODUCIIO~ . . -- _..;~-._ 

- One of the most significant purposes of calorimetry is t&e study of the nkasmx+ 
ment of heat cvoIvcd or absorbed in physical i&ologicai aud che!mical reactions- ‘I& 

.. flow of heat or other analogous quantities arc usually graphically shown~agaiust time 
or tempera&-e. An example is illustrated iu Fig. 1 -of a lirst-&q. phase tkiusition 
(c,g.i melting of a substan~$~ which could a+ be subs&u&d by-$‘sudd& chemical 
(kg., au explosion) or bioIogical (eg1, mu&e kontxaction of. a-&t an&al) event 

Ideal& thec~rresp+ingheatflow at themoment of the reactionshouldbe i&i&y 
far&e c&c&taut (DiracGfun&on)- HoWev&,_t+ calorimetes supplik aikitel_kneared~~ 
hea@& ti whose size and foimare dkpcndenz’upoti t& cai+ns%r,:tim.e and 
+y oth$rs factors, The‘mtasared peak d- n~t~coincide-with -thc.e eveut, 
becauk the calorimetk falsifi;es the physic& rcactionr Eve&thc:pionGs-of cal&i- 
$x&-y dave ken occupied with the sear&h f&r a methiM to correzt this i&in& error’, 

z 

_ I do not wish + ~weik+cm;&ii~ is&s; but &.h&~~.supp~y~thkpractical rnlrn 
- . e& & &&q td’_+id.+.& eyaIuatijng &@+&-&~ d&d: p@%if@ 6f 

1~. _+@+& a s;j&+& -awart & prorwe * y&j&& functiog 
_.‘_ ma?-& *_a ‘of &_ .&, ~_l-f.&.4 
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ideal Heat -Curer,.. : 

ORlGlXSOF-G _ 

Fi~ffitisnecesary todarifytheoriginsof’.‘smearing”ofthei~hcat 
ffow due to the apparatzs The transportation of heat by mokuIar compensation 

effkcts requires much more time than net&d in other balance protess-5. Theheat 
conduction equation descrii the relation: 

one dimensionaIIy simpmxi: 
:__--_ 

. . (Ai) 

T(M) is thi tempcratunz at time t and place x, p the density, c,, the speciik heat 
capacity, 2. the heat conducrion coefficient_ _+. -. ” -.._. ;, 

TheffOwOf~~perunitinisotropicmcrliais: -- .-- -.Thz 
. -__ 
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I&m 2 ilhstratcs the sblkio<fo~ a simpk &ob&. A r@_@@pmp&rahue 
T’, is brought into contixct with a biock with temperature T, at time to, heat flows i&o 
the rod at a distincCra$ until it has reached the texuperatu~~ of the block Figure 3 
shows -the time-dependent flow of heat through tie cross-sections of a rod_ -_T&is 
example g&s an explan&&for the “sm~ heat flow cuqxs obtained for a q&k 

event (heat contact). l& order to obtain a more pre&estatcment of the ~orimetxic 

processes, one must first solve the heat c&duct& equa&on for the in&i-&d bound_ 
axy conditions T&e L-e many different methods that can be employed, for exampIe 
to caIcuIate the he& flow phe&me& in &&or t&hn~lOgy~-~_ The folio&& & an 
approximation developed at the atomic researc h center in Karlsruhes. Any &ven body 

composed of various su&ces can be reduc& into its sub-pzwticles (e-g_, cub&)_ A 
_- -.. -:_. - ; _ . - . --_._ : .I 

_ , -1 - 
.__. 

GeaAetriCaI -. 
. Arrangement . .I 

:-, 



cube is then substituted by a ma&ess,-ideal condu&ive rod to the~next ~&@&ring 
site. The thermal conductivity coefficiexit of the rod can be cakulatui from then 

contact point, the distance between the cubes and the thernA conductivity coefficient 
of the corresponding substances (Fig. 4)_ One &en obtains a netw~& +f Ahermal 
conductivity, whereby an energy-baIance at each distinct point can be’aIculated XIS 

foIlows: 

CQ-~t=CP-p’V-(IV--T)+Q,-p-V 

0 is the heat flow, cP the spex%c heat capacity, V t&e volume, p the-de&&y, 3: the 
final temperature, T the initial tempera&e, Q, the specific heat of t&&for&&ion 
of the distinct point and AZ the change in time. The foIlowing e&&on sy&m is 
for an entire network of points: _ -_ 

k$&-(T,-TT3-df=c+-p, K<Ti-_TJ.+(2, d(i=i,2,3,__n).~ : - 

Ti is the initiaI temperature fieId, 5 the li.ual temperature field. The change in time 

& must be lower than a critical coefficient to avoid ffuctuations. 
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Temperature -Rofi!es 
--- Polyethylene 
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heated w-iih lK&nin 

Fig.6- Computcd~-fiowaans ixltocanWinthcatcdpIatcsofdifkaltthidrmss. 
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but& inside the -PE- and ht-sampks as weii as in the &ady-&e and during the 
&&t&~~&agc~ Figure 6.showS.tbat the thickness Qf ti sampI&:isa &ry iniportant 
fadorfoi-thc_resulting,_mekin& 4xuvc_ i : _,_ 

. 
1, ::; : .._ 7: .I.. ^ <-. __: : -, 



3 
A:Cyiindrkd sample 

- . 

Heating rate: 1Khin 

CO~UCriON OF CALORISEEBS 

. . - ___.- .*1. 

Figure 9 shows the primi@.construction of dorime&, -w&ch;rccord 
tempcraturmicpcmknt heat flow curves (DTA:or DSC ~~c&e)_ .Xh2j. type of 
caiorim3erraxxdsaspc4Scauvt(see~~_IO~ whenancndoth+c&&hami~ 
ZlSCtiOZl ~axus in the sampk at a tempc+m6 T;_ Tble tcmpex+me of-&&m& 

react&m it.remaixn 
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quick exothermic process 

qrrick endothermic process 

prritbout changing l.be clistance of the heat conduction pathway. This is made possibly 
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The heat fiow aIso cxeates a temperature baIance between the isothermic block and the 
contains, because the conducted heat is related to the temperature of the container 
via its teat capacity C. 

dQ c -d TB -= 
dz -dt 

Since T, is c~nstant.z 

with T = TB - To it foIlow& 
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(iA%, I3rownia.u motion of air moIe&Ies) or the measurement e&r, then it is no 

IongtrdlstindenoughtoberecordedanditisaIsomathc~cafiy~~I~torttrace 
it to its ori_$n_ The flapping of thefly’s wings produces heat which comes into contact 

with moving air moIecuIes_ This osci&ng heat flow from the fly Can no longer be 

distinguished, since it has been transformed into a balanced heat flow due to the 
presence of the motion of the air molecules. Therefort, the entire information of 
reaction is iost and there are no possi%Ie means to obt&iit The stat%tical d&ztuations 
of the measured values shollld be included in the heat conduction equation, they cause 
fiuctuations at the point of mtasurement for negative times much greater than the 

measured event. 
AlsO si_W obtained at the measuring probe that h&e a greater value th& the 

sta&caI error can ha&y be retraced back to their origin, with &e-aid-of the heat 
conduction equation A simplified mathematical method has been a.doptCa in other 
fidds of physics (j-e, optics)_ This method ntiIizes the e&re knowledge of the a@paraA 
tus in or&r to caIcuIate unknown complex processes from e &- 

The followiug gives a summary of the conditions under which this Tie-smearing” 
method can be empIoyed_ Let us assume that at x, a rapid reactions g(x) takes p’ia~e, 
which can be described with the aid of the Dirac function b(x): 

1 

cL)forx = 0 

a(x) = 
OeIse 

andjsodr= I 

-Q 

g(x)=&-b(x-xx,)aud g(x)dx=Q, 
I 
0 

Q, is total heat of the reaction. 
The instrument gives the fundion a(x) where: 

From h(x) one obt& the “apparatus f&&on’* f(x) aIso known aS Wit-Cmction” 
in optics, by normaliz& the initial values and the area: 
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Fig-15 supupositionof~annoas~~the~._ tOtwoqGckcval& -. _ 
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one can approximate a continuous function g(x) with the aid of a multitude of rapid 



Fig_ 16. Answer of the apparatus to a timc-dependcnt event, 

this is the defmition of the foIlowing integral: 

?IhkiSZ-d 
atbrewiated form: 

4x) = ZZG 

- w’)dx’ @I 

Convolution Theorem which can akC be stated in a -ftiiar 

This integral equation reveals the mathematical relationship between the meastired 
function h(x), the true result g(x) and the apparatus function f(x), under the following 
assumptions: _- 

(1) T&eapparativeresultofasuddeneventmustbereprodtibIeaxidnciimal- 

izible relative to all o&r experimental factors (i-e-, initial v&e and are&_ 

(2) The apparatus must be capable to &xxp&e t&e resuJts of inany rapid 
xxzactions (linear behavior)_ 

_- _ .-- ~. 

FcwRIERTRANsFORMANi RECURSJON METHOD 
___ -. 

If the apparatus function is known, then it can be sub$ituted in _*e; integkl 
equation above, It is thezn pssible with the function of the messuremen t h(x) to 
obtain zhe unknown tnre result g(x)_ Both, the Fourier-transfo+&i~n a+ the 
recursion method require the mathematical calculation of a comptiter_~Th&F&icr- 
tLraxlso~on is an integd opem.ion: % _ -_. ._ _;:. 



The required function is produced in the Fourier-retra&o&atiou: : . -.-- -. _ 
r -. 
. ::- 

. -__ - 

_ 

_ -i . 

This method is aiways applicab1e;~simx-z Fourier transformatioti has become common- 
place in all_cotiputer~ The main drawback is the lengthy cddatioxis and_thcgeneti 
unckamus because of computation in Fourier space Those who have no ex~riticaz 
with Fourier-transformation should be aware of the %&king-off-effkct’? and. the 

“‘sampling thcorexn’~; which tend to register pekdicity and fi nctuations that do not 

exist More extensi$e information can be found in the literaUre6* *_ . ; 

The following shows the Recmxion r&hod employed to solve $h& Convolution 
Theorem: .: :’ _. ._ 

g&) =-h(T) 

g&) = &SAX) f (bi4 - f(Z&)) 

The diff&ence between the “refolded” approximation g,_,(x): 

Jaw = KGz*w 

: 

and the measured function h(x) are simpIy arldezd to correct the approxi&.tion. The 

Recursion formula does not uxwerge in the case of angular fiructions of an-event 
(in-Out-Effect). Angles or unsteady functions create Osciiations of the ap$oximation 
fu&tion, which quickly diverge, The smooth curyts obtained in calorimetry &nverge 

quickly and easily. Usually after 20 steps, the square-sum.of the error @etween the 
m&surexI and fabricated function: (A h(x))2 is less than 5. percent It is very easy--to 
program the. Recursion formula, since it Contains only the Convolution +xiuct 
wQi& is a .simpit integratiqn-procedure- In order to_‘%iesrn& the measured *es,. 

t&asnunptions~stated aboG? m-be checked &h the a&aratus-f+tion procored- 
~4% ‘& shown in: t& deduction of. the for&w it is neceky to employ &id-_ 



l3upedoI apparht~.Y . . I: -.. .-.- 
: 

_.. . --_ _- _ 

Exothermic pr<xxsses: Joules heat (&rent impnlscs according to re&tance or 

&ctrolyCes). 
-I~- L ~-- 

Endothermic~rocesses: PeltiereffizctinthermoeIements. --: : -: 

One varies the size of the heat impulses but maintains the &xiitions identical 
to the measurements to he desmeared, This is a very crucial factor because, as we have 
seen_ the measured curve is dependent upon the sire and timetry of the SampIe as 
weIl as the heat-conduction coefficients_ The measured curves obtained a& normalized 
with respect to the area and initial position. If there is a fairly good correlation, then 
it can be employed as the apparatus function. If the fiuctuations arc not systcmatid. 
orofaLarge~thenthemeancurvecanbeempIoyedwithcautiontotryUdb 

smearingV’. It is a3so advisable to ,compare the measured ~curves of two or more npid 
rracrionswiththccal~curve.inorderto~~kthesupcrposition-Iftheapparatus 
works hz linear behavior and is reproducible, then the convoIution integraI givz~ a 
pre&e method to “desmear’ heat-ffow curves and an slsbnishing high resotutix~ 
This is shown in Fig, 17 for the meI_e of octadccane, Anormzdizd tie&g 
curve of the same amount of benzoic acid was employed to give the apparatus 
function_ fndium, a common standard substance was not nsed in this case, becan 
it has an entirely different heat-conduction coefficient than the organic substance. The 

extent of the “de-smearing? efficiency is shown by the relationship between the 

cpcsmtus functim 
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refo@ed f&on h_(x)- aid the. measured funczion;+This gs a &_ -- .3&g__ 18 for- 
OctaQccanc; -when the chaage--of- the measured heat’ fiow,: as a function of t+ne~ is 
comparable & size w the resolution of the apparatus, 

- 
charaderuad 3s the haifkidth 

of the appara&s- fi3n&yon, theq desmearing.. is _advisabk F. the changes of the 
measmed heat flow occur at a very slow,.r;ite; then it is not necessary to “de-smear”, 
sincethr:~fundio*isagoodapproximationofthetruth,- -.. . 

.- ._ _ 

ERRORS-.‘ _-.- :. I . 
. , 

_In conchsion, I wouid like to d&.zss e&on_ The d . _ 

.- 

-eSSOf-~resul~is- 

dependent up& the precisen ess of the measured function h(x) and the apparatus 
function f(x)- Here, this relationship cannot be derived exactly but only hinted7, 

According to aU rules, the preciseness in the x-dire&ion (temperature or time 
scaIe)ismuchgrea&randwecanwrites - . . 

f-wEi_ai = @La, z!z df 

~drma.lrcd 

I 
=hfx),,&dh I -. ._ 

&m&&led = imuuc zk 44 
with fluctuations_in@epetid+ of x and approximated by ,the &an ~Wue, which is 
assnmed to be constant 

Substitution in equation (D) gives an approximation of the err& 

ldgj I jdhl f Q-idqandQ = g(x)dx 

This formula only holds, if we can solve the integral equation for the con~lution 
exactIy_ By employing an approximation such as the Recursion formula., the resulting 
errors must be taken into acCouIlt separatiy: 

I&R&l9 = iho - LWi + Q - I4 

As shown in Fig. 18, Ih(x) - ux)] is a iimction of the abscissa and the error also. 

. 

Fg 19, Appracm function wi;a -on zud hemx following ti&h .- 
. _ .-~ .- -. 
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Any flectuati0ns of the -"de-smeared" measured curve w h i c h a r e sm~!!er .tlmn:|Ag| +-._
Ik~. , , : l are m~re ly ~ . ~ i c a l .and not i m p 0 r m . L F l , _ , _ ~ , ~ 0 n s o f t h e : a p~parm~:
function Af cause fluctuations of the half-width va lue ~ b (see F i g . i 9 ) . One can show
th:~t the hnlf-width value of the ~ flank o f the a p p a r a t ~ functi0n i s a measure of
t /~ resolution o f t h ¢ apparatus in-the abscissa d i r r ~ 0 m - Themfore;- i~ fluctnation is.a .
measure of the resolut ion Of the ,de - smeared" -measured . ~ in' t h e ~ ~
direction. ~ improvement of the resolution is contiguous to thedifference between-
the half-width va lue and its fluctuation. As a rule of t h u m b , one can say *~hat for
apparatus functions similar to the one s h o w n in Fig. 13, the resolution in the abscissa
d i r c ~ o n a f t e r ~ d ~ g " is b c u e r than half of the steep f lankwid th bt (Fig. 19).
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